Gaussian mixture parameter estimation with known means and unknown class-dependent variances
نویسنده
چکیده
منابع مشابه
Convergence Rates for Bayesian Density Estimation of Infinite-dimensional Exponential Families
We study the rate of convergence of posterior distributions in density estimation problems for log-densities in periodic Sobolev classes characterized by a smoothness parameter p. The posterior expected density provides a nonparametric estimation procedure attaining the optimal minimax rate of convergence under Hellinger loss if the posterior distribution achieves the optimal rate over certain ...
متن کاملProjected likelihood contrasts
This paper develops a test for homogeneity in finite mixture models where the mixing proportions are known a priori (taken to be 0.5) and a common nuisance parameter is present. Statistical tests based on the notion of Projected Likelihood Contrasts (PLC) are considered. The PLC is a slight modification of the usual likelihood ratio statistic or the Wilk’s Λ and is similar in spirit to the Rao’...
متن کاملParameter estimation for autoregressive Gaussian-mixture processes: the EMAX algorithm
The problem of estimating parameters of discrete-time non-Gaussian autoregressive (AR) processes is addressed. The subclass of such processes considered is restricted to those whose driving noise samples are statistically independent and identically distributed according to a Gaussian-mixture probability density function (pdf). Because the likelihood function for this problem is typically unbou...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 35 شماره
صفحات -
تاریخ انتشار 2002